Please use this identifier to cite or link to this item:
https://dspace.ctu.edu.vn/jspui/handle/123456789/71618
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kalfagianni, Efstratia | - |
dc.date.accessioned | 2021-12-30T07:00:55Z | - |
dc.date.available | 2021-12-30T07:00:55Z | - |
dc.date.issued | 2021 | - |
dc.identifier.issn | 0251-4184 | - |
dc.identifier.uri | https://dspace.ctu.edu.vn/jspui/handle/123456789/71618 | - |
dc.description.abstract | We show that the strong slope conjecture implies that the degrees of the colored Jones knot polynomials detect the figure 8 knot. Furthermore, we propose a characterization of alternating knots in terms of the Jones period and the degree span of the colored Jones polynomial. | vi_VN |
dc.language.iso | en | vi_VN |
dc.relation.ispartofseries | Acta Mathematica Vietnamica;Vol. 46, No. 02 .- P.289-299 | - |
dc.subject | Alternating knot | vi_VN |
dc.subject | Colored jones polynomial | vi_VN |
dc.subject | Figure 8 knot | vi_VN |
dc.subject | Hyperbolic knot | vi_VN |
dc.subject | Strong slope conjecture | vi_VN |
dc.title | Remarks on jones slopes and surfaces of knots | vi_VN |
dc.type | Article | vi_VN |
Appears in Collections: | Acta Mathematica Vietnamica |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
_file_ Restricted Access | 1.53 MB | Adobe PDF | ||
Your IP: 3.146.65.134 |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.