Please use this identifier to cite or link to this item: https://dspace.ctu.edu.vn/jspui/handle/123456789/71618
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKalfagianni, Efstratia-
dc.date.accessioned2021-12-30T07:00:55Z-
dc.date.available2021-12-30T07:00:55Z-
dc.date.issued2021-
dc.identifier.issn0251-4184-
dc.identifier.urihttps://dspace.ctu.edu.vn/jspui/handle/123456789/71618-
dc.description.abstractWe show that the strong slope conjecture implies that the degrees of the colored Jones knot polynomials detect the figure 8 knot. Furthermore, we propose a characterization of alternating knots in terms of the Jones period and the degree span of the colored Jones polynomial.vi_VN
dc.language.isoenvi_VN
dc.relation.ispartofseriesActa Mathematica Vietnamica;Vol. 46, No. 02 .- P.289-299-
dc.subjectAlternating knotvi_VN
dc.subjectColored jones polynomialvi_VN
dc.subjectFigure 8 knotvi_VN
dc.subjectHyperbolic knotvi_VN
dc.subjectStrong slope conjecturevi_VN
dc.titleRemarks on jones slopes and surfaces of knotsvi_VN
dc.typeArticlevi_VN
Appears in Collections:Acta Mathematica Vietnamica 

Files in This Item:
File Description SizeFormat 
_file_
  Restricted Access
1.53 MBAdobe PDF
Your IP: 3.146.65.134


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.