Please use this identifier to cite or link to this item: https://dspace.ctu.edu.vn/jspui/handle/123456789/84781
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorLâm, Nhựt Khang-
dc.contributor.authorHuỳnh, Quang Nhật Hào-
dc.date.accessioned2023-01-05T03:09:15Z-
dc.date.available2023-01-05T03:09:15Z-
dc.date.issued2022-
dc.identifier.otherB1809687-
dc.identifier.urihttps://dspace.ctu.edu.vn/jspui/handle/123456789/84781-
dc.description42 Trvi_VN
dc.description.abstractImage captioning uses image recognition techniques and natural language processing models to generate captions of photos. In this thesis, we perform experiments with several models to automatically create descriptions for images using the Inception-v4, LSTM Models and BERT Embeddings. In particular, the Inception-v4 model extracts image features later fed into the LSTM and BERT Embeddings model to generate image captions. We perform experiments on the Flickr8k dataset in English and Vietnamese and evaluate the models using the BLEU metric. The experimental results show that combining the Inception-v4, LSTM Models and BERT Embeddings helps achieve better BLEU scores than others. The experimental results show that the combination of Inception-v4, LSTM Models and BERT Embeddings help achieve better BLEU scores than other models. The BLEU1, 2, 3, and 4 scores of the Inception-v4, LSTM Models and BERT Embeddings on the English and Vietnamese Flickr8k datasets are 0.689, 0.479, 0.3649, 0.267; and 0.647, 0.501, 0.332, 0.271 respectively.vi_VN
dc.language.isoenvi_VN
dc.publisherTrường Đại Học Cần Thơvi_VN
dc.subjectCÔNG NGHỆ THÔNG TIN - CHẤT LƯỢNG CAOvi_VN
dc.titleIMAGE CAPTIONING USING INCEPTION-V4, LSTM MODELS AND BERT EMBEDDINGSvi_VN
dc.title.alternativeXÂY DỰNG CÂU MÔ TẢ CHO HÌNH ẢNH SỬ DỤNG MÔ HÌNH INCEPTION-V4, LSTM VÀ BERT EMBEDDINGSvi_VN
dc.typeThesisvi_VN
Appears in Collections:Trường Công nghệ Thông tin & Truyền thông

Files in This Item:
File Description SizeFormat 
_file_
  Restricted Access
1.56 MBAdobe PDF
Your IP: 3.141.29.165


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.