Please use this identifier to cite or link to this item: https://dspace.ctu.edu.vn/jspui/handle/123456789/84782
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorLâm, Nhựt Khang-
dc.contributor.authorMai, Phước Vinh-
dc.date.accessioned2023-01-05T03:12:58Z-
dc.date.available2023-01-05T03:12:58Z-
dc.date.issued2022-
dc.identifier.otherB1805835-
dc.identifier.urihttps://dspace.ctu.edu.vn/jspui/handle/123456789/84782-
dc.description40 Trvi_VN
dc.description.abstractImage captioning has been a topic of interest due to its various implementations such as impaired persons support, recommendations system, virtual assistants, image indexing, social media, and many other applications. Several studies using different architectures, such as LSTM, CNN, or RNN, have yielded promising results and have steadily improved over time. This thesis uses the mesh-memory Transformer approach to infer description sentences for images. The experimental results show that the meshmemory Transformer model effectively generates captions for images in Vietnamese. In particular, the BLEU-1, 2, 3, and 4 scores of the model on the Flickr8k dataset Vietnamese are 0.703, 0.589, 0.489, and 0.397, respectively.vi_VN
dc.language.isoenvi_VN
dc.publisherTrường Đại Học Cần Thơvi_VN
dc.subjectCÔNG NGHỆ THÔNG TIN - CHẤT LƯỢNG CAOvi_VN
dc.titleMESHED-MEMORY TRANSFORMER FOR IMAGE CAPTIONING IN VIETNAMESEvi_VN
dc.title.alternativeXÂY DỰNG CÂU MÔ TẢ CHO HÌNH ẢNH SỬ DỤNG MÔ HÌNH MESHED-MEMORY TRANSFORMERvi_VN
dc.typeThesisvi_VN
Appears in Collections:Trường Công nghệ Thông tin & Truyền thông

Files in This Item:
File Description SizeFormat 
_file_
  Restricted Access
2.65 MBAdobe PDF
Your IP: 3.147.82.22


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.