Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này: https://dspace.ctu.edu.vn/jspui/handle/123456789/85069
Nhan đề: ỨNG DỤNG HỌC SÂU ĐỂ CHẨN ĐOÁN BỆNH NHÂN COVID-19 QUA ẢNH CT PHỔI
Nhan đề khác: APPLYING DEEP LEARNING TO DETECT COVID-19 PATIENTS BASED ON CT IMAGES
Tác giả: Trần, Nguyễn Dương Chi
Nguyễn, Ngọc Lam Tường
Từ khoá: KHOA HỌC MÁY TÍNH
Năm xuất bản: 2022
Nhà xuất bản: Trường Đại Học Cần Thơ
Tóm tắt: Trong luận văn này, ứng dụng các phương pháp học sâu được giới thiệu để xây dựng mô hình chẩn đoán bệnh nhân COVID-19 qua ảnh CT phổi. Một bộ dữ liệu đường gồm 2794 ảnh CT phổi sẽ được thu thập từ 2 bộ dữ liệu COVID-CT-Dataset: A CT Scan Dataset about COVID-19 [18] và SARS-COV-2 CT-Scan Dataset [28] [29] được dùng để huấn luyện các mô hình phân loại hình ảnh CT phổi mắc bệnh COVID-19. Mô hình phân loại ảnh CT phổi đươc huấn luyện trên ba mô hình là VGG16, DensNET, ResNET. Kết quả thực nghiệm được thực hiện trên 500 ảnh với trung bình precision, recall và F1-score của mô hình ResNET là 93%, 99% và 96%; cao hơn hai mô hình còn lại là VGG16 là 65%, 96% và 77% và mô hình DenseNET là 90%, 99% và 94%. Từ các kết quả kiểm thử mô hình cho thấy mô hình ResNET phù hợp để ứng dụng vào việc hỗ trợ chẩn đoán hình ảnh CT phổi trong lĩnh vực y tế.
Mô tả: 41 Tr
Định danh: https://dspace.ctu.edu.vn/jspui/handle/123456789/85069
Bộ sưu tập: Trường Công nghệ Thông tin & Truyền thông

Các tập tin trong tài liệu này:
Tập tin Mô tả Kích thước Định dạng  
_file_
  Giới hạn truy cập
6.44 MBAdobe PDF
Your IP: 18.226.186.153


Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.