Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này:
https://dspace.ctu.edu.vn/jspui/handle/123456789/85322
Toàn bộ biểu ghi siêu dữ liệu
Trường DC | Giá trị | Ngôn ngữ |
---|---|---|
dc.contributor.author | Pham, Thai Binh | - |
dc.contributor.author | Amiri, Mahdis | - |
dc.contributor.author | Nguyen, Duc Manh | - |
dc.contributor.author | Ngo, Quoc Trinh | - |
dc.contributor.author | Nguyen, Trung Kien | - |
dc.contributor.author | Tran, Trung Hieu | - |
dc.contributor.author | Vu, Hoang | - |
dc.contributor.author | Bui, Thi Quynh Anh | - |
dc.contributor.author | Le, Van Hiep | - |
dc.contributor.author | Prakash, Indra | - |
dc.date.accessioned | 2023-02-20T03:33:17Z | - |
dc.date.available | 2023-02-20T03:33:17Z | - |
dc.date.issued | 2022 | - |
dc.identifier.issn | 0866-7187 | - |
dc.identifier.uri | https://dspace.ctu.edu.vn/jspui/handle/123456789/85322 | - |
dc.description.abstract | In recent years, machine learning techniques have been developed and used to build intelligent information systems for solving problems in various fields. In this study, we have used Optimized Inference Intelligence System namely ANFIS-PSO which is a combination of Adaptive Neural-Fuzzy Inference System (ANFIS) and Particle Swarm Optimization (PSO) for the estimation of shear strength parameters of the soils (Cohesion “C” and angle of internal friction “φ”). These parameters are required for designing the foundation of civil engineering structures. Normally, shear parameters of soil are determined either in the field or in the laboratory which require time, expertise and equipments. Therefore, in this study, we have applied a hybrid model ANFIS-PSO for quick and cost-effective estimation of shear parameters of soil based on the other six physical parameters namely clay content, natural water content, specific gravity, void ratio, liquid limit and plastic limit. In the model study, we have used data of 1252 soft soil samples collected from the different highway project sites of Vietnam. The data was randomly divided into 70:30 ratios for the model training and testing, respectively. Standard statistical measures: Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and Correlation Coefficient (R) were used for the performance evaluation of the model. Results of the model study indicated that performance of the ANFIS-PSO model is very good in predicting shear parameters of the soil: cohesion (RMSE = 0.075, MAE = 0.041, and R = 0.831) and angle of internal friction (RMSE = 0.08, MAE = 0.058, and R = 0.952). | vi_VN |
dc.language.iso | en | vi_VN |
dc.relation.ispartofseries | Vietnam Journal of Earth Sciences;Vol.43, No.02 .- P.189-198 | - |
dc.subject | Adaptive neural- fuzzy inference system | vi_VN |
dc.subject | Particle swarm optimization | vi_VN |
dc.subject | Shear strength | vi_VN |
dc.subject | Soft soil | vi_VN |
dc.subject | Vietnam | vi_VN |
dc.title | Estimation of shear strength parameters of soil using optimized inference intelligence system | vi_VN |
dc.type | Article | vi_VN |
Bộ sưu tập: | Vietnam journal of Earth sciences |
Các tập tin trong tài liệu này:
Tập tin | Mô tả | Kích thước | Định dạng | |
---|---|---|---|---|
_file_ Giới hạn truy cập | 2.1 MB | Adobe PDF | ||
Your IP: 216.73.216.119 |
Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.