Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này: https://dspace.ctu.edu.vn/jspui/handle/123456789/94213
Toàn bộ biểu ghi siêu dữ liệu
Trường DCGiá trị Ngôn ngữ
dc.contributor.advisorTrần, Công Án-
dc.contributor.authorNguyễn, Quốc Bảo-
dc.date.accessioned2024-01-04T00:51:59Z-
dc.date.available2024-01-04T00:51:59Z-
dc.date.issued2023-
dc.identifier.otherB1910618-
dc.identifier.urihttps://dspace.ctu.edu.vn/jspui/handle/123456789/94213-
dc.description51 Trvi_VN
dc.description.abstractIn this thesis, We delve into a comprehensive study on the application of Graph Convolutional Networks (GCN) for prescription extraction, specifically focusing on extracting drug names to meet the needs of health monitoring and drug information retrieval. Here, We adopt an approach that harnesses the graph structure within prescription data to capture relationships between information positions within the prescription, specifically the relationships between crucial entities that need to be extracted, such as drug names. The core idea of the project is closely tied to the design, training, and development of the GCN model on the labeled prescription dataset. The model is specifically designed to learn and generalize information related to drug names, enabling the extraction of drug name information. Additionally, the project aims for generality in the prediction process to enhance accuracy in predictions. The outcomes of the project hold significant implications for healthcare management and health care, thanks to the progress in applying machine learning in real-life situations. In summary, this research not only broadens the perspective of applying machine learning to natural language processing and information extraction but also brings significance to the field of health informatics, laying the groundwork for future breakthroughs and further improvements in both academic learning and real-world applications. Experimental results revealed that our model has achieved 0.98%, 0.95%, 0.89% and 0.92% for accuracy, precision, recall and F1-score. With this accuracy, the project has met the goal of extracting drug name information from invoices and is a premise for other projects to extract specific information based on images.vi_VN
dc.language.isoenvi_VN
dc.publisherTrường Đại Học Cần Thơvi_VN
dc.subjectCÔNG NGHỆ THÔNG TIN - CHẤT LƯỢNG CAOvi_VN
dc.titleDRUG INFORMATION EXTRACTION FROM PRESCRIPTION WITH GCNvi_VN
dc.title.alternativeRÚT TRÍCH THÔNG TIN THUỐC TỪ ĐƠN THUỐC VỚI GCNvi_VN
dc.typeThesisvi_VN
Bộ sưu tập: Trường Công nghệ Thông tin & Truyền thông

Các tập tin trong tài liệu này:
Tập tin Mô tả Kích thước Định dạng  
_file_
  Giới hạn truy cập
7.58 MBAdobe PDF
Your IP: 216.73.216.119


Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.