Please use this identifier to cite or link to this item: https://dspace.ctu.edu.vn/jspui/handle/123456789/94881
Title: PHÂN LOẠI NHỊP TIM BẰNG TÍN HIỆU ĐIỆN TÂM ĐỒ SỬ DỤNG RESNET-101 VÀ SENET
Other Titles: ELECTROCARDIOGRAM-BASED HEARTBEAT CLASSIFICATION USING RESNET-101 AND SENET
Authors: Lâm, Nhựt Khang
Đặng, Thành Trung
Keywords: CÔNG NGHỆ THÔNG TIN
Issue Date: 2023
Publisher: Trường Đại Học Cần Thơ
Abstract: Ứng dụng trí tuệ nhân tạo trong chăm sóc sức khỏe đang phát triển mạnh mẽ, đặc biệt là nghiên cứu chẩn đoán bệnh lý từ dữ liệu do các thiết bị y khoa ghi nhận lại. Trong lĩnh vực tim mạch, đa số những bất thường được phát hiện đầu tiên bằng điện tâm đồ (Electrocardiogram - ECG) vì đây là đồ thị ghi lại hoạt động của tim bằng những đoạn sóng. Tuy nhiên, quá trình đọc ECG đòi hỏi nhiều kỹ năng và kinh nghiệm chuyên môn nếu bỏ sót một sự thay đổi trên ECG cũng có thể ảnh hưởng kết quả điều trị của người bệnh. Do đó, đề tài “Phân loại nhịp tim bằng tín hiệu điện tâm đồ sử dụng ResNet-101 và SENet” được đề xuất nhằm phân loại những bất thường trên điện tâm đồ và kết hợp giải thuật giải thích mô hình để hỗ trợ bác sĩ trong quá trình điều trị. Đề tài tập trung nghiên cứu mô hình ResNet kết hợp SENet và phương pháp Shapley Additive exPlanations (SHAP) bằng các thử nghiệm khác nhau để đánh giá hiệu quả phân loại. Các mô hình được huấn luyện trên tập dữ liệu CPSC2018. Độ chính xác được đánh giá trên ba tập dữ liệu CPSC2018 test, CPSC-Extra-test và PTBXL-test; mô hình ResNet-101_SE đạt kết quả phân loại tốt nhất với f1-score trung bình trên ba tập dữ liệu tương ứng lần lượt là là 0.825, 0.527 và 0.470.
Description: 73 Tr
URI: https://dspace.ctu.edu.vn/jspui/handle/123456789/94881
Appears in Collections:Trường Công nghệ Thông tin & Truyền thông

Files in This Item:
File Description SizeFormat 
_file_
  Restricted Access
3.93 MBAdobe PDF
Your IP: 18.188.245.152


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.