Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này: https://dspace.ctu.edu.vn/jspui/handle/123456789/96393
Nhan đề: So sánh hiệu suất thuật toán hồi quy tuyến tính, học sâu và rừng ngẫu nhiên cho bài toán dự báo chịu tải cực hạn của khung thép phi tuyến tính phi đàn hồi = Comparison of linear regression, deep learning and random forest algorithms for predicting ultimate load capacity of nonlinear inelastic analysis of steel frames
Tác giả: Nguyễn, Thị Thanh Thúy
Ngô, Mạnh Thiếu
Nguyễn, Tiền Chương
Trương, Việt Hùng
Từ khoá: Khung thép
Phân tích phi đàn hồi phi tuyến tính
Học máy
Năm xuất bản: 2023
Tùng thư/Số báo cáo: Tạp chí Xây dựng;Số 659 .- Tr.153-157
Tóm tắt: Sự phát triển nhanh chóng và mạnh mẽ của ngành khoa học máy tính và khả năng tính toán trong vài thập kỷ gần đây đã thúc đẩy những ứng dụng của các phương pháp phân tích tiên tiến vào các bài toán thiết kế kỹ thuật xây dựng nói chung và thực hành thiết kế khung thép nói riêng. Một trong những hướng khả thi và phổ biến là áp dụng các thuật toán học máy vào dự đoán các ứng xử của kết cấu khung thép trong phân tích phi đàn hồi phi tuyến tính. Điều này cho thấy những ưu điểm rõ ràng như đẩy nhanh được quá trình ra quyết định, giảm tỷ lệ lỗi và tăng hiệu quả tính toán. Trong nghiên cứu này, 3 thuật toán học máy phổ biến hiện nay được nghiên cứu cho bài toán dự báo khả năng chịu tải của khung thép bao gồm: Hồi quy tuyến tính, Học sâu và Rừng ngẫu nhiên. Hiệu quả khi áp dụng các phương pháp học máy được xem xét qua một ví dụ số khảo sát một khung thép phẳng 5 nhịp 14 tầng. Phân tích phi đàn hồi phi tuyến tính nâng cao được thực hiện cho khung thép nhằm tạo bộ dữ liệu cho huấn luyện để giảm thiểu thời gian phân tích. Các biến đầu vào của bài toán là các đặc điểm hình học của tiết diện thanh dầm cột được chọn từ danh mục có sẵn. Hiệu suất của các thuật toán học máy được đánh giá bằng cách sử dụng các chỉ số về lỗi gồm sai số bình phương trung bình (MSE), hệ số xác định (R2) và Kết quả cho thấy phương pháp rừng ngẫu nhiên có hiệu quả tốt nhất trong ba phương pháp học máy lựa chọn.
Định danh: https://dspace.ctu.edu.vn/jspui/handle/123456789/96393
ISSN: 2734-9888
Bộ sưu tập: Xây dựng

Các tập tin trong tài liệu này:
Tập tin Mô tả Kích thước Định dạng  
_file_
  Giới hạn truy cập
4.04 MBAdobe PDF
Your IP: 3.145.79.214


Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.