Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này: https://dspace.ctu.edu.vn/jspui/handle/123456789/97549
Nhan đề: Optimal tracking control for robot manipulators with asymmetric saturation torques based on reinforcement learning
Tác giả: Nguyen, Duc Dien
Nguyen, Tan Luy
Lai, Khac Lai
Từ khoá: Robot manipulators
Reinforcement learning
Optimal control
Competitive learning
Asymmetry saturation inputs
Năm xuất bản: 2023
Tùng thư/Số báo cáo: Journal of Computer Science and Cybernetics;Vol.39, No.01 .- P.61-77
Tóm tắt: This paper introduces an optimal tracking controller for robot manipulators with asymmetrically saturated torques and partially - unknown dynamics based on a reinforcement learning method using a neural network. Firstly, the feedforward control inputs are designed based on the backstepping technique to convert the tracking control problem into the optimal tracking control problem. Secondly, a cost function of the system with asymmetrically saturated input is defined, and the constrained Hamilton-Jacobi-Bellman equation is built, which is solved by the online reinforcement learning algorithm using only a single neural network. Then, the asymmetric saturation optimal control rule is determined. Additionally, the concurrent learning technique is used to relax the demand for the persistence of excitation conditions. The built algorithm ensures that the closed-loop system is asymptotically stable, the approximation error is uniformly ultimately bounded (UUB), and the cost function converges to the near-optimal value. Finally, the effectiveness of the proposed algorithm is shown through comparative simulations.
Định danh: https://dspace.ctu.edu.vn/jspui/handle/123456789/97549
ISSN: 1813-9663
Bộ sưu tập: Tin học và Điều khiển học (Journal of Computer Science and Cybernetics)

Các tập tin trong tài liệu này:
Tập tin Mô tả Kích thước Định dạng  
_file_
  Giới hạn truy cập
5.86 MBAdobe PDF
Your IP: 3.137.219.117


Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.