Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này: https://dspace.ctu.edu.vn/jspui/handle/123456789/97549
Toàn bộ biểu ghi siêu dữ liệu
Trường DCGiá trị Ngôn ngữ
dc.contributor.authorNguyen, Duc Dien-
dc.contributor.authorNguyen, Tan Luy-
dc.contributor.authorLai, Khac Lai-
dc.date.accessioned2024-03-12T08:46:45Z-
dc.date.available2024-03-12T08:46:45Z-
dc.date.issued2023-
dc.identifier.issn1813-9663-
dc.identifier.urihttps://dspace.ctu.edu.vn/jspui/handle/123456789/97549-
dc.description.abstractThis paper introduces an optimal tracking controller for robot manipulators with asymmetrically saturated torques and partially - unknown dynamics based on a reinforcement learning method using a neural network. Firstly, the feedforward control inputs are designed based on the backstepping technique to convert the tracking control problem into the optimal tracking control problem. Secondly, a cost function of the system with asymmetrically saturated input is defined, and the constrained Hamilton-Jacobi-Bellman equation is built, which is solved by the online reinforcement learning algorithm using only a single neural network. Then, the asymmetric saturation optimal control rule is determined. Additionally, the concurrent learning technique is used to relax the demand for the persistence of excitation conditions. The built algorithm ensures that the closed-loop system is asymptotically stable, the approximation error is uniformly ultimately bounded (UUB), and the cost function converges to the near-optimal value. Finally, the effectiveness of the proposed algorithm is shown through comparative simulations.vi_VN
dc.language.isoenvi_VN
dc.relation.ispartofseriesJournal of Computer Science and Cybernetics;Vol.39, No.01 .- P.61-77-
dc.subjectRobot manipulatorsvi_VN
dc.subjectReinforcement learningvi_VN
dc.subjectOptimal controlvi_VN
dc.subjectCompetitive learningvi_VN
dc.subjectAsymmetry saturation inputsvi_VN
dc.titleOptimal tracking control for robot manipulators with asymmetric saturation torques based on reinforcement learningvi_VN
dc.typeArticlevi_VN
Bộ sưu tập: Tin học và Điều khiển học (Journal of Computer Science and Cybernetics)

Các tập tin trong tài liệu này:
Tập tin Mô tả Kích thước Định dạng  
_file_
  Giới hạn truy cập
5.86 MBAdobe PDF
Your IP: 216.73.216.82


Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.