Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này: https://dspace.ctu.edu.vn/jspui/handle/123456789/97967
Nhan đề: Dự đoán khả năng sạt lở đất ở Việt Nam bằng các thuật toán học máy
Tác giả: Phạm, Trọng Huynh
Từ khoá: Sạt lở đất
Học máy
Hồi quy
Rừng ngẫu nhiên
K- láng giềng
Năm xuất bản: 2023
Tùng thư/Số báo cáo: Tạp chí Khí tượng Thủy văn;Số 751 .- Tr.78-90
Tóm tắt: Việt Nam là quốc gia có địa hình đồi núi dốc và nằm trong vùng mưa nhiệt đới gió mùa, vì vậy hiện tượng sạt lở đất diễn ra khá phổ biến. Nghiên cứu này tập trung vào việc dự đoán khả năng sạt lở đất ở Việt Nam bằng các thuật toán hồi quy, Random Forest (RF), Extreme Gradient Boosting (XGBoost), K-Nearest Neighbor regression (KNN), Linear Support Vector Regressor (SVR), và Linear Regression (LR). Các biến đặc trưng có liên quan đến sạt lở đất được sử dụng, bao gồm độ ẩm đất, địa chấn động đất, lượng mưa, độ cao và độ dốc. Các thuật toán được huấn luyện trên tập dữ liệu mẫu để đánh giá hiệu suất của chúng. Kết quả nghiên cứu cho thấy thuật toán Random Forest (RF) có thể dự đoán tốt khả năng sạt lở đất. Kết quả dự đoán từ tập huấn luyện và tập kiểm tra, với hệ số xác định R² có giá trị cao nhất 0,85, thể hiện khả năng giải thích biến động dữ liệu tốt. Bên cạnh đó các giá trị (MSE) và (RMSE) thấp nhất lần lượt là 150,21 và 12,25. Các thuật toán khác cũng cho kết quả tương đối tốt, nhưng (RF) vượt trội hơn. Điều đó cho thấy cần kết hợp năm thuật toán này lại với nhau để xử lý một lượng lớn các dữ liệu có độ phức tạp cao, nhằm tạo ra một mô hình dự đoán sạt lở đất ở Việt Nam bằng các thuật toán học máy có tính ổn định, chính xác.
Định danh: https://dspace.ctu.edu.vn/jspui/handle/123456789/97967
ISSN: 2525-2208
Bộ sưu tập: Khí tượng Thủy văn

Các tập tin trong tài liệu này:
Tập tin Mô tả Kích thước Định dạng  
_file_
  Giới hạn truy cập
7.32 MBAdobe PDF
Your IP: 18.188.218.219


Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.