Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này:
https://dspace.ctu.edu.vn/jspui/handle/123456789/47780
Nhan đề: | Some new results on automatic indentification of Vietnamese folk songs Cheo and Quanho |
Tác giả: | Chu, Ba Thanh Trinh, Van Loan Nguyen, Hong Quang |
Từ khoá: | Identification Folk songs Vietnamese Cheo Quanho GMM MFCC Excerpt Tempo F0 I-vectors |
Năm xuất bản: | 2020 |
Tùng thư/Số báo cáo: | Journal of Computer Science and Cybernetics;Vol. 36, No. 04 .- P.325–345 |
Tóm tắt: | Vietnamese folk songs are very rich in genre and content. Identifying Vietnamese folk tunes will contribute to the storage and search for information about these tunes automatically. The paper will present an overview of the classification of music genres that have been performed in Vietnam and abroad. For two types of very popular folk songs of Vietnam such as Cheo and Quanho, the paper describes the dataset and Gaussian Mixture Model (GMM) to perform the experimentson identifying some of these folk songs. The GMM used for experiment with 4 sets of parameters containing Mel Frequency Cepstral Coefficients (MFCC), energy, the first and the second derivatives of MFCC and energy, tempo, intensity, and fundamental frequency. The results showed that the parameters added to the MFCCs contributed significantly to the improvement of the identification accuracy with the appropriate values of Gaussian component number M. Our experiments also showed that, on average, the length of the excerpts was only 29.63% of the whole song for Cheo and 38.1%of the whole song for Quanho, the identification rate was only 3.1% and 2.33% less than the whole song for Cheo and Quanho, respectively. The identification of Cheo and Quanho was also tested with i-vectors. |
Định danh: | https://dspace.ctu.edu.vn/jspui/handle/123456789/47780 |
ISSN: | 1813-9663 |
Bộ sưu tập: | Tin học và Điều khiển học (Journal of Computer Science and Cybernetics) |
Các tập tin trong tài liệu này:
Tập tin | Mô tả | Kích thước | Định dạng | |
---|---|---|---|---|
_file_ Giới hạn truy cập | 4.51 MB | Adobe PDF | ||
Your IP: 44.192.26.226 |
Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.