Please use this identifier to cite or link to this item: https://dspace.ctu.edu.vn/jspui/handle/123456789/5239
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLê, Thanh Tùng-
dc.date.accessioned2018-11-21T11:24:13Z-
dc.date.available2018-11-21T11:24:13Z-
dc.date.issued2017-
dc.identifier.urihttp://localhost:8080//jspui/handle/123456789/5239-
dc.description.abstractThe aim of this paper is to study strong Karush-Kuhn-Tucker optimality conditions and duality for nonsmooth multiobjective semi-infinite programming. By using the Michel-Penot subdifferential and suitable generalized regularity conditions, we establish the strong necessary and sufficient optimality conditions for some kind of efficient solutions of nonsmooth multiobjective semi-infinite programming. We also propose Wolfe and Mond-Weir duality schemes for multiobjective semi-infinite programming and explore weak and strong duality relations under the generalized convexity.vi_VN
dc.language.isoenvi_VN
dc.relation.ispartofseriesJournal of Nonlinear Functional Analysis;2017 .- p.1-21-
dc.subjectMultiobjective semi-infinite programmingvi_VN
dc.subjectKKT optimality conditionvi_VN
dc.subjectWolfe dualityvi_VN
dc.subjectMond-Weir dualityvi_VN
dc.subjectMichel-Penot subdifferentialvi_VN
dc.titleStrong Karush-Kuhn-Tucker optimality conditions and duality for nonsmooth multiobjective semi-infinite programming via Michel-Penot subdifferentialvi_VN
dc.typeArticlevi_VN
Appears in Collections:Tạp chí quốc tế

Files in This Item:
File Description SizeFormat 
_file_406.86 kBAdobe PDFView/Open
Your IP: 3.229.142.91


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.