Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này:
Nhan đề: Prediction of optimal cooking time for boiled potatoes by hyperspectral imaging
Tác giả: Nguyễn, Đỗ Trọng Nghĩa
Tsuta, Mizuki
Nicolai, Bart
Baerdemaeker, Josse De
Saeys, Wouter
Từ khoá: Hyperspectral imaging
Image processing
Năm xuất bản: 2011
Tùng thư/Số báo cáo: Journal of Food Engineering;115 .- p.617-624
Tóm tắt: Cooking of potatoes causes changes in the microstructure and composition of starch. These changes affect the interaction of light with the starch granules at different regions inside the potato. In this research, the potential of hyperspectral imaging in the wavelength range 400-1000 nm in combination with chemometric tools and image processing for contactless detection of the cooking front in potatoes has been investigated. Partial least squares discriminant analysis (PLSDA) was employed to discriminate between the pixel spectra for the cooked regions and those for the remaining raw regions. In a next step image processing techniques were applied to detect the cooking front in the images obtained by the PLSDA pixel classification. From each of the resulting images with detected cooking fronts, the ratio of the remaining raw part area over the total potato area was then calculated. Finally, the effect of the cooking time on this ratio was modeled to be able to predict the optimal cooking time. The results illustrate the potential of hyperspectral imaging as a process monitoring tool for the potato processing industry.
Định danh: http://localhost:8080//jspui/handle/123456789/5222
Bộ sưu tập: Tạp chí quốc tế

Các tập tin trong tài liệu này:
Tập tin Mô tả Kích thước Định dạng  
_file_838.15 kBAdobe PDFXem
Your IP:

Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.